A Mariner Transposon-Based Signature-Tagged Mutagenesis System for the Analysis of Oral Infection by Listeria monocytogenes
نویسندگان
چکیده
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
منابع مشابه
A mariner-based transposition system for Listeria monocytogenes.
In this study, we developed a new mariner-based transposition system for Listeria monocytogenes. The mariner-based system has a high rate of transposition and a low rate of plasmid retention, and transposition is very random, making it an ideal tool for high-throughput transposon mutagenesis in L. monocytogenes.
متن کاملIdentification of Listeria monocytogenes Determinants Required for Biofilm Formation
Listeria monocytogenes is a Gram-positive, food-borne pathogen of humans and animals. L. monocytogenes is considered to be a potential public health risk by the U.S. Food and Drug Administration (FDA), as this bacterium can easily contaminate ready-to-eat (RTE) foods and cause an invasive, life-threatening disease (listeriosis). Bacteria can adhere and grow on multiple surfaces and persist with...
متن کاملA mariner-Based Transposition System for Listeria monocytogenes Running title: Himar1 mariner-based transposition system for Listeria
متن کامل
Random transposon mutagenesis of Campylobacter jejuni.
Genetic studies of Campylobacter jejuni have been limited due to the lack of a transposon mutagenesis method. Here, we describe a novel technique for random transposon mutagenesis using a mariner-based transposon into C. jejuni strain 480. Insertions were random, as demonstrated by Southern blot analysis and insertional junction sequencing. We have demonstrated, for the first time, random in vi...
متن کاملA mariner transposon vector adapted for mutagenesis in oral streptococci
This article describes the construction and characterization of a mariner-based transposon vector designed for use in oral streptococci, but with a potential use in other Gram-positive bacteria. The new transposon vector, termed pMN100, contains the temperature-sensitive origin of replication repATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-i...
متن کامل